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Popular summary: 

Aerosols are particles of different composition and origin and influence the formation 

of clouds which are important in atmospheric radiative balance. At the present there is 

high uncertainty on the effect of aerosols on climate and this is mainly due to the fact that 

aerosol presence in the atmosphere can be highly variable in space and time. Monitoring 

of the aerosols in the atmosphere is necessary to better understanding many of these 

uncertainties. A lidar (an instrument that uses light to detect the extent of atmospheric 

aerosol loading) can be particularly useful to monitor aerosols in the atmosphere since it 

is capable to record the scattered intensity as a function of altitude from molecules and 

aerosols. One lidar method (the Raman lidar) makes use of the different wavelength 

changes that occur when light interacts with the varying chemistry and structure of 

atmospheric aerosols. 

One quantity that is indicative of aerosol presence is the aerosol extinction which 

quantifies the amount of attenuation (removal of photons), due to scattering, that light 

undergoes when propagating in the atmosphere. It can be directly measured with a 

Raman lidar using the wavelength dependence of the received signal. In order to calculate 

aerosol extinction from Raman scattering data it is necessary to evaluate the rate of 

change (derivative) of a Raman signal with respect to altitude. Since derivatives are 

defined for continuous functions, they cannot be performed du-ectly on the experimental 

data which are not continuous. The most popular technique to find the functional 

behavior of experimental data is the least-square fit. This procedure allows finding a 

polynomial function which better approximate the experimental data. The typical 



approach in the lidar community is to make an a priori assumption about the functional 

behavior of the data in order to calculate the derivative. It has been shown in previous 

work that the use of the chi-square technique to determine the most likely functional 

behavior of the data prior to actually calculating the derivative eliminates the need for 

making a priori assumptions. We note that the a priori choice of a model itself can lead 

to larger uncertainties as compared to the method that is validated here. 

In this manuscript, the chi-square technique that determines the most likely functional 

behavior is validated through numerical simulation and by application to a large body of 

Raman lidar measurements. In general, we show that the chi-square approach to evaluate 

aerosol extinction yields lower extinction uncertainty than the traditional technique. We 

also use the technique to study the feasibility of developing a general characterization of 

the extinction uncertainty that could permit the uncertainty in Raman lidar aerosol 

extinction measurements to be estimated accurately without the use of the chi-square 

technique. 
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We report on the improvement of a Raman lidar algorithm for calculating 

aerosol extinction. In order to calculate aerosol extinction from Raman lidar 

data it is necessary to evaluate the derivative of a molecular Raman signal 
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is to make an a priori  assumption about the functional behavior of the 

data in order to calculate the derivative. It has previously been shown that 

the use of the chi-square technique to determine the most likely functional 

behavior of the data prior to actually calculating the derivative eliminates 
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through numerical simulation and by application to a large body of Raman 

lidar measurements. In general, we show that the chi-square approach to 

evaluating extinction yields lower extinction uncertainty than traditional 

techniques. We also use the technique to study the feasibility of developing a 

general characterization of the extinction uncertainty that could permit the 

uncertainty in Raman lidar aerosol extinction measurements to be estimated 
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1. Introduction 

The aerosol extinction coefficient is an important quantity in the study of the influence of 

aerosols on climate. At present there is a large uncertainty in the globally averaged forcing 

due to the aerosol indirect effect,l which is estimated to be between 0 and -2 WmW2. This 

uncertainty is related mainly to  a poor understanding of cloud microphysics together with 

the fact that aerosols have very inhomogeneous distributions in the atmosphere that can 

significantly change with time. One of the important capabilities of Raman Lidar systems is 

the ability to retrieve range-resolved profiles of aerosol extinction.2 This, together with the 

possibility of long-term monitoring of aerosols can help improve the current knowledge of the 

influence of aerosols on climate. EARLINET (European Aerosol Research LIdar N E T w o ~ ~ ) ~  

is a network of lidars on a continental scale provides useful information to satisfy these 

needs. Raman lidar systems involved in EARLINET are located in 223 different geographic 

locations over the European continent. The lidar stations in EARLINET use a number 

of different techniques to calculate extinction. Particular attention has been given to the 

relative precision of the calculation of the aerosol extinction from each lidar station. In order 

to validate all the algorithms extinction comparison efforts have been executed.* As we will 

show, in comparison efforts such as this one the use of different algorithms can lead to large 

differences in the resulting extinction uncertainties. Moreover the a priori  choice of the model 

itself can result in larger uncertainties as compared to  the method that is validated here. We 

will refer to the frequently used technique of evaluating the aerosol extinction using a linear 

least squares fit4 as the “traditional technique”. We will show that, for the cases studied here, 

the linear model upon which the traditional technique is based is the least probable model 

to fit Raman lidar data for the purposes of evaluating aerosol extinction, and consequently 

gives on average a larger uncertainty than the technique described here. 

The paper is organized in the following way: in section 2 the equations to be used and the 

chi-square technique will be described together with the findings from previous related work. 

In section 3 the results of simulations done with different aerosol extinction profiles will be 

presented. Section 4 will present the results obtained with some experimental data from the 
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NASA/Goddard Space Flight Center SRL (Scanning Raman Lidar) during two measure- 

ment campaigns in which it was deployed at the DOE (Department Of Energy)/ARM (At- 

mospheric Radiation Measurement) site in Lamont, Oklahoma. Section 5 will present the 

implications of the results of this work on the measurements of quantities important to the 

study of the aerosol effects on the climate and finally section 6 will provide a summary of 

the study with conclusions. 

2. The Equations 

The aerosol extinction coefficient is usually calculated from the Raman nitrogen signal with 

the equation:’ 

where aaer(A,, z )  is the aerosol extinction at the wavelength of the laser A,, A N  is the 

wavelength of the molecular nitrogen channel, a,,~ ( A,, 2 )  and a,,, ( AN, z )  are the molecular 

extinction respectively, at the laser wavelength (A,) and at the nitrogen Raman wavelength 

(A,), N N ( z )  is the number density of the molecular nitrogen and z 2 P ( X ~ ,  z )  is the range- 

square-corrected nitrogen signal. Here a scaling has been assumed for the aerosol extinction 

with wavelength denoted by the Angstrom coefficient k ( z )  that is, in general, a function 

of the altitude, since it is a function of the kind of aerosol present. For this study, the 

Angstrom coefficient is put equal to one since the effort here will focus on the evaluation of 

the derivative. 

In order to calculate the extinction it is necessary to calculate a derivative (Eq. (l)), a 

quantity that is defined for continuous functions. Here the argument of the derivative is 

not a continuous function instead it is lidar signal strength in discrete range cells, so the 

derivative must be calculated numerically. Different methods that are traditionally used for 

this calculation are sliding averages, as well as other smoothing techniques, and sliding linear 

fit.4 

It has been shown5 that the a priori  assumption, represented by the choice of one of the 
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methods traditionally used, before executing the derivative is not necessary and that in fact 

it goes against the rules of statistics. The chi squared test will therefore be used here as a 

tool for avoiding the a priori assumption, since it allows to determine from the data the 

model that is most likely to represent the parent population of the data. 

Before proceeding further, some considerations have to be made about the term containing 

the derivative in Eq. (1). This factor can be written as: 

The results presented in this paper are entirely obtained expressing the derivative as in Eq. 

(2). Since the number of accumulated counts required in a given range cell in order for the 

Raman lidar signal to be useful for deriving aerosol extinction is much greater than 10, we 

can assume that the statistics pertaining to each range cell is essentially Gaussian. However, 

as has been described b e f ~ r e , ~  the argument of the derivative in equation 1 does not follow a 

Gaussian distribution. In fact the ratio of two Gaussian variables (as N N  (z) and z 2 P ( X ~ , z ) )  

in general does not possess Gaussian statistics and in the case of quantities of interest to 

the lidar community, the statistics of the ratio NN(z) /  z 2 P ( X ~ , z )  is at best approximately 

Gaussian.' The natural logarithm modifies the statistics further and statistical tests executed 

on simulated data, not shown in this paper, indicate that the argument of the derivative in 

Eq. (1) does not possess a Gaussian statistics in accordance with theory. Therefore it is 

not possible to meaningfully apply the chi-square test to the lidar data unless the aerosol 

extinction isevaluated using Eq. (2). Since such calculation is straightforward we suggest 

that this expression be used to calculate aerosol extinction instead of Eq. (1). 

The choice of the most probable model is dependent on the chi square probability. The 

cumulative probability, which is defined as the integral of the probability distribution func- 

tion, is used to  determine how likely a given fit is and represents the probability of obtaining 

a chi-squared larger than that obtained in the fitting exercise. The measured chi square will 

be reasonably close to its expectation value as long as its cumulative probability is reason- 

ably close to 0.5.7 In our interpretation of this test among the set of models chosen, that in 
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this case are first to third order polynomials, the model which has a cumulative probability 

closest to 0.5 is considered the most probable. 

Previous applicati6ns of the chi-square te~hnique,~ using just the linear and quadratic 

models, showed that differences in extinction as large as 10% were made when using this 

technique as opposed to the traditional technique. Moreover differences up to  f 40% were 

present among the corresponding uncertainties. 

3. The Simulation 

In order to show how the algorithm works a simulation was performed. A numerical model8 

was used to simulate Raman nitrogen signals as would be measured by a lidar system with 

the same operational characteristics as the NASA/GSFC Scanning Raman Lidar (SFG) dur- 

ing 1996-1997.9110 During this period, the SRL participated in three field campaigns at the 

DOE (Department Of Energy) ARM (Atmospheric Radiation Measurements) site in Lam- 

ont, Oklahoma. The experimental data that will be used in this paper are from WVIOP 

(Water Vapor Intensive Operation Period) held from 10 to 30 Sept 1996 and WVIOP2 held 

from Sept 15 to Oct 5 1997.11 Each of these campaigns focused on quantifying accuracies 

and determining limitations of atmospheric water vapor measurement technologies. To reach 

this goal, measurements of atmospheric water vapor from different co-located sensors, in- 

cluding the SRL, were performed. Besides water vapor measurements, aerosol backscatter 

and extinction measurements were also acquired by the SRL during the three campaigns 

but were not previously analyzed. In section 4 will study these data using the chi-square 

technique described here. 

The parameters that were used in the numerical model are reported in table 1. They were 

chosen to simulate the nighttime measurement characteristics of the SRL and were validated 

by selecting efficiency terms that force the simulation to match actual measurements. Differ- 

ences between simulated and experimental data were reduced to less than 2.5% within the 

overlap region, decreasing with altitude. 
- In order to test the method in different conditions of extinction and signal uncertainty, 

two synthetic profiles of extinction were created and are shown in figure 1. One represents a 
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constant aerosol loading in the boundary layer (Extl) and the other simulates a lofted aerosol 

layer (Ext2). To calculate the derivative of the nitrogen signal as a function of altitude, which 

is required to calculate the extinction profile from a nitrogen signal profile, a window of five 

points was selected. The resolution of the lidar signal is 75m and a window of five points 

corresponds to a cell 375m wide. The five-point window slides one point along the lidar 

profile for each successive determination of the extinction. A least square fit is performed on 

the five points in each cell. For each cell one value of the extinction and the corresponding 

uncertainty are calculated from the fit parameters. In the cases discussed in this paper, 3 

orders of polynomials are considered and 3 different least square fits (linear, quadratic and 

cubic) are performed on each group of five points resulting in 3 extinction profiles with 

corresponding chi-square probability. The chi-square test is finally used to choose the most 

probable model at each altitude thus creating a single extinction profile as a function of the 

altitude. The sliding window creates a profile of extinction and uncertainty with the same 

spatial resolution as the lidar original data. 

In this simulation the statistical performance of the algorithm was investigated by using 

an ensemble of 200 synthetic lidar profiles of Raman nitrogen. With all other parameters 

remaining constant, different averaging times were simulated so that a range of random 

uncertainties in the lidar signal could be investigated. Since, as it will be shown, the behavior 

of the chi-square technique depends on the uncertainty in the data, the 200 lidar profiles were 

created with averaging times ranging from 60s to 6000s. If N is the number of averaging times 

considered, the ensemble of lidar nitrogen signals will number 200xN for each of the two 

simulated extinction profiles considered (figure 1) resulting in a total of 2 x 200 x N simulated 

data profiles. From each of the simulated extinction profiles, there will also be 2x200xN 

extinction profiles obtained with each of the three polynomial fits: linear, quadratic and 

cubic. Finally the chi-square test will choose the most probable model for each altitude in 

each profile, resulting in 2 x 200xN profiles of extinction and corresponding uncertainty from 

the chosen model. For the simulations performed here, N was three since averaging times of 

60, 600 and 6000 seconds were studied. 

In figure 2 the frequencies with which the models are selected in the 200-profile ensemble 
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are displayed as a function of altitude and for different averaging times. For example in figure 

2-c, corresponding to 600s averaging time, at the altitude of 2.5km the linear model (solid 

black line) was chosen very few times in the corresponding 200 extinction calculations while 

the quadratic (dotted line) and the cubic (dashed line) models were chosen with similar 

frequencies (-50%). In fact if we consider the points at 2.5 km in plot 2-b (60s averaging 

time) all of the three models are chosen a similar fraction of the time (-33%), while in plot 

2-d (6000s averaging time) the linear model is never chosen and the quadratic and cubic 

models are chosen with frequency -50%. This means that at the fixed altitude of 2.5 km, 

the linear functional form describes less accurately the data with respect to the other two as 

we go from plot 2-b to 2-d. It is evident that the choice of model depends on the noise in the 

nitrogen signal. The results shown in plots 2-b to 2-d differ only in the averaging time and 

in particular plot 2-b corresponds to a larger uncertainty in the signal than plot 2-d. The 

uncertainty in the signal changes not only with the averaging time but also with altitude. 

In fact the points that correspond to higher altitudes in a lidar profile in general have larger 

uncertainty than those at lower altitudes. It is shown in any of the plots 2-b to 2-d that 

higher in the profiles the frequency of selection tends to be similar for the three models. 

Despite the fact that for any given profile within the ensemble of 200 there is a definite 

choice of the model, the variability of the data, given the noise level simulated, implies that 

all models are equally probable for the ensemble of simulations. This shows that in general 

as the uncertainty in the nitrogen signal increases the underlying functional behavior of the 

data is harder to reveal. This will be shown more clearly in figure 3. 

An interesting result is that the linear model is never chosen as the most probable outside 

of the portions of profiles where the uncertainty is too large to allow for the underlying 

functional behavior to be revealed (i.e. where all three models are chosen approximately as 

often). A n  exception can be seen in the case of the lofted aerosol extinction layer case (Ext2) 

between 0 and 2.5 km, where the linear model has a peak in its likelihood. This implies that 

the choice of the model by means of the chi-square technique depends also on the shape of 

the extinction profile. 

In figure 3 we investigate the model selection as a function of the signal uncertainty and the 
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extinction. In figure 3-a for example the white pixels indicate regions in which the frequency 

with which the linear model is chosen is 30% less than the cubic, grey pixels indicate when 

the linear and cubic frequencies differ by less than 30% and the black pixels correspond to 

lack of data. As noted already in figure 2, when the signal uncertainty is smaller the linear 

model is chosen less often than the other two. In figure 3, when the signal uncertainty is 

less than 0.2% the linear model is chosen more that 30% less than the cubic, but when the 

extinction is larger, for example 0.25 km-’, even if the uncertainty in the signal is as much 

as 0.3% the probability of selection of the linear model is the same. Figure 3-b shows similar 

features. If we consider the line bisecting the diagrams, passing through the points (0,O) 

and (1.3,0.5), this line is dividing the diagram in two triangles. The triangle corresponding 

to large extinction and small signal uncertainty values is called upper triangle, the other 

is called lower triangle. The upper triangle in both the figures 3-a and 3-b (small signal 

uncertainty and large extinction) is the region in which the underlying functional behavior 

is more clearly distinguished. 

To study the influence that the chi-square method technique has on the uncertainty in 

the calculated extinction, the average uncertainties for the 200 profiles ensemble and for a 

single averaging time (600s) are shown in figure 4. Both the average extinction uncertainty 

(4-a and 4-d) and the corresponding standard deviations (4-b and 4 e )  are shown for the 

linear, quadratic and cubic models as well as for the model chosen by the chi-square tech- 

nique (indicated by “chosen”). For the case of Extl (4-a), the mean extinction uncertainty 

corresponding to the linear model is up to a factor of four times larger than the uncertainty 

in the extinction obtained with either the quadratic or cubic fit below 2 km. In this altitude 

region the linear model was almost never chosen by the chi-square test (figure 2-b). For the 

case of Ext2 (4d)  the behavior is similar to the case of Extl, with the exception of alti- 

tudes around lkm. In this range the linear model was considered as likely as the other two 

(2-g). These results show that there is on average a relationship between the likelihood of a 

model and the corresponding extinction uncertainty. In particular the linear model, when it 

is not the most probable, gives an uncertainty that is larger than the uncertainty calculated 

with the chosen model. This is shown also in figure 5. Six points along the extinction pro- 
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files are chosen, three for each simulated extinction profile (5a-b), and the frequency of the 

linear model having an uncertainty larger than the chosen model are shown as a function 

of the averaging time (5-c). For example in figure 5-c for averaging times equal to 60s, for 

the altitudes corresponding to the point indicated with A, the uncertainty in the extinction 

calculated with the linear model is 100% of the times (in the 200 points ensemble) larger 

than the extinction uncertainty calculated with the most probable model. In the same way 

corresponding to the altitude in 5-b indicated with D, the uncertainty calculated with the 

linear model is larger than the uncertainty with the chosen model 93% of the times. In the 

case of the 60s averaging time only in two cases, corresponding to the points indicated with 

C and F, the linear model uncertainty is smaller than the chosen model uncertainty less than 

70% of the times. For larger averaging times that correspond to smaller uncertainties in the 

lidar signal the linear model gives an uncertainty larger than the chosen model more than 

80% of the times. Therefore, this simulation shows that, as anticipated, the a priori choice 

of the linear model for the calculation of the aerosol extinction is generally unjustified and 

can have a strong influence in the estimate of the extinction uncertainty. In particular it 

results in larger uncertainties with respect to the most probable model chosen based on the 

chi-square test. 

4. Application to experimental data 

The chi-square technique was then applied to experimental data collected with the SRL12 

between 1996 and 1997. During that period, the SlU used a XeF laser, which has output 

spectrum centered at 351.1nm. The laser emits 400 pulses per second with an average power 

of 12-20W. The collection optics consists of a 0.76m Dall-Kirkham telescope. The scanning 

capability is made possible by the presence of a mirror that can rotate in a single axis allowing 

measurements along angles between 0 and -90 degrees from the vertical. The advantage of 

taking angle measurements is the possibility of retrieving data even below the minimum 

altitude defined in the vertical position by the overlap function. Information regarding the 

experimental configuration of the SRL during the time of these measurements may be found 

ingand.10 
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The data analyzed here are from two campaigns between 1996 and 1997 during which the 

scanning Raman lidar was deployed at the DOE/ARM site Southern Great Plains in Okla- 

homa. Even though the principal focus of these campaigns was the study and comparison 

of water vapor measurements from different instruments,” a large dataset of aerosol back- 

scatter and extinction measurements was produced with the SRL. Time series of data at 

different angles were collected. A total of more than 80 hours of extinction profiles were an- 

alyzed using the chi-square technique. The data, corresponding to nighttime measurements, 

were selected for a percentage uncertainty in the resulting extinction smaller than 50%. This 

would allow rejecting portions of the data in which the extinction was either very small 

and/or the uncertainties very large. 

With the purpose of investigating the relationship between the most probable model, the 

aerosol extinction and the signal uncertainty, all the data were combined to generate figure 

6a which shows the most frequently chosen model as a function of the extinction and the 

signal uncertainty. The points in the dataset are divided in 7 x 7 cells (note how the cell 

size relates to both extinction and uncertainty) and among the points in one cell the most 

frequently chosen model is indicated. There is one cell that is labeled with Unclear which 

contains only two measurements among which the cubic model and the quadratic model were 

chosen an equal number of times by the chi-square technique. As with the simulated data, 

the linear model is chosen the least frequently in these experimental data. Moreover there is 

a general preference towards the cubic model (- 70% likelihood). 

As stated in the abstract, one of the goals of this research is to explore a general character- 

ization of the extinction uncertainty as a function of the magnitude of aerosol extinction and 

the random uncertainty in the Raman lidar nitrogen signal. For such characterization, large 

datasets with measurements corresponding to different aerosol and atmospheric conditions 

are necessary. The dataset used in this paper corresponds to measurements obtained in three 

field campaigns during the same season (fall) and in the same geographic location, so they 

do not possess the characteristics necessary to draw general conclusions. Nonetheless, these 

-results points toward the feasibility of generating such a general relationship and may be 

taken as a preliminary version of such a relationship. In figure 6b the average extinction 

, 
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uncertainty is shown as a function of aerosol extinction and signal uncertainty. We can see 

that in the upper triangle, corresponding to higher extinction and smaller signal uncertain- 

ties, the average extinction uncertainty is always below lo%, while it is higher than 10% 

in the remaining region of the diagram but is never larger than 20%. Characterizations of 

the extinction uncertainty by means of these diagrams could allow evaluating the magnitude 

of the extinction uncertainty expected for different combinations of aerosol extinction and 

signal uncertainty. For example if a measurement of the aerosol extinction is expected to be 

on average 0.1 km-l and the desired accuracy is less than 5%, according to the results of 

this study a signal uncertainty below 0.3% is necessary. At the same time if an accuracy of 

10-20% is sufficient for the same value of the extinction, the uncertainty in the signal can be 

as large as 1.1%. 

5. Implications 

In the previous section we presented a general relationship between aerosol extinction and 

lidar extinction uncertainty. We use those results here to study the feasibility of accurately 

measuring the continental US background aerosol extinction. Also, the simulation executed 

here shows that on average the use of the chi-square technique to calculate aerosol extinction 

from Raman lidar data could reduce the uncertainty on the extinction with respect to the 

traditional technique (linear least square fit chosen a priori) by up to a factor of -4 (figure 

4). This has an influence on the estimate of the uncertainties in the quantities that are used 

to evaluate the climatic effect of aerosols that depend on aerosol extinction and optical depth. 

Here a brief review of the potential influence of the reduction of the extinction uncertainty 

on some of these quantities, assuming that Raman lidar extinction measurements were used 

in each, is presented. 

5. A. Continental US Background aerosol loading 

Reference diagrams like the one in figure 6b can be useful for example to understand with 

which accuracy it is possible to measure the average background aerosol extinction. In 1988 

a monitoring program was initiated called IMPROVE (Interagency Monitoring of Protected 

11 



Visual Environments) l3 with the objective to measure background visibility levels. One of 

the main results of this program was the calculation that the average background aerosol 

extinction over all the US territory was - 0.05 km-I based on three years of measurements 

from stations distributed throughout the Unites States. If a similar background value was to 

be measured with the SRL, according to the diagram in figure 6b, it could be done with an 

uncertainty smaller than 10% if the uncertainty in the lidar signal was smaller than 0.3%. 

Using the configuration of the SRL as described, these measurements can be made during 

the nighttime with 300 seconds of averaging. 

5. B. Aerosol direct effect 

The aerosol direct effect is the effect that the aerosols have on the radiative balance of 

the atmosphere.' It is due both to aerosols absorbing and reflecting the radiation from the 

sun and the radiation emitted from the surface of the Earth. If an aerosol cloud is present 

a simple radiative transfer model accounting for surface emissivity, surface temperature, 

aerosol optical depth and aerosol temperature gives an equation for the aerosol radiative 

forcing. This is defined as the difference between the outgoing radiance at the top of the 

atmosphere when the aerosols are present and the same quantity in the absence of aerosols. 

A simple radiative transfer model that can be used to estimate the aerosol forcing Fa,, (W 

m-' sr-l pm-l) is: 

where is the emissivity of the aerosols, E, the emissivity of the surface, B is the black 

body emission function, T, is the temperature of the surface and T,,, is the temperature 

of the aerosols. For example if the presence of aerosols in the atmosphere is as described 

from the aerosol extinction profile indicated with Extl in figure 1, we can estimate that 

Ta,,=4" C, T,=15" C, E, =0.95 and knowing that Eaer=l-exp(-T) , where r is the optical 

depth of the aerosols, if one integrates the extinction profile to obtain optical depth, an 

extinction uncertainty like the one shown in figure 4a for the chi-square technique propagates 
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to an uncertainty in the aerosol forcing of -0.8%. The resulting uncertainty in the aerosol 

forcing when the linear least square fit is used would be 3.2%. In this case using the chi- 

square technique as opposed to the traditional technique reduces the uncertainty on the 

aerosol forcing by a factor of 4. This means that the traditional technique would give a 

measurement of the aerosol forcing of -1.55f0.05 Wm-2 while the chi-square technique gives 

a measurement of -1.550f0.012 Wm-'. 

5. C. Aerosol indirect effect 

As already stated, there is currently a high uncertainty on the knowledge of the effect that 

the aerosols have on cloud microphysics and lifetime (the aerosol indirect effect).14 Recently a 

parameterization of the indirect effect was proposed by Feingold,15 which defines the indirect 

effect as the ratio between the change in aerosol extinction Q! (or optical depth) and the 

change in cloud droplets effective radius re. The expression of the aerosol indirect effect is 

given by: l5 

where r, are two different measurements of the effective radius and a, are the two corre- 

sponding measurements of the extinction. The propagation formula for the uncertainty in 

IE, if only the uncertainties on the extinction (gl and 0 2  ) are considered, is given by: 

I -  ,. 

If the uncertainty in extinction is 1% it results in an uncertainty in IE of 1.6%. If the 

uncertainty on the extinction is four times larger, as for example for the linear model with 

respect to the chi-square technique in the case of figure 4a below 1.5 km, the resulting 

uncertainty in the IE is -6.5%. This means that a reduction of a factor of four in the 

uncertainty in the aerosol extinction results in a reduction of a factor of four in the uncertainty 

on E. 
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5. D. CCN retrieval 

The influence of aerosol on cloud microphysics starts with the influence on the concentra- 

tion of Cloud Condensation Nuclei (CCN). An increase in the concentration of aerosols in 

the atmosphere causes an increase in CCN concentration that depends on the saturation 

conditions, since not all the aerosols are activated to grow to cloud droplets. For this reason 

the capability of measuring the concentration of CCN is essential to the improvement of the 

current knowledge about the cloud formation mechanisms. A n  algorithm for the calculation 

of the CCN concentration by extrapolation of measurements taken at the surface was intro- 

duced by Ghan." The algorithm is based on the dependence of the CCN concentration on 

the aerosol extinction Q(Z) and its dependence on humidity f[FtH(z)]. The expression of the 

CCN concentration at an altitude z is given by: 

where zo is the ground altitude at which measurements of the CCN concentration are 

made directly (CCN(zo)), f[RH(zo)] and f[RH(z)] are the scattering dependence on humidity 

respectively at the ground and at the altitude z, that can be retrieved knowing the relative 

humidity profiles, and a(z0) and a(z) are the extinction coefficients respectively at the ground 

level and at the altitude z. If we consider for example the case of Extl with Ol(z0)=0.5 

km-I and a(z)=0.17 km-l, the uncertainties obtained with the chi-squared technique are 

respectively 0.0016 km-l and 0.006 km-'. If only the uncertainty D~ on the extinction is 

considered, the uncertainty on the CCN concentration is found with the formula: 

The uncertainties in the extinction result in an uncertainty in the CCN concentration equal 

to 3.5%. The uncertainties in the extinctions obtained with the linear model are respectively 

0.037 km-land 0.015 km-I and the resulting uncertainty in the CCN concentration is equal 

to 11%. In the case of the calculation of the CCN concentration the use of the chi-squared 
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technique as opposed to the linear fit would result in a reduction of the extinction uncertainty 

of a factor of 3. 

5. E. Aerosol plume transport 

Measurements of the aerosol extinction profile and the derived aerosol optical thickness are 

very useful also in case of transport of plumes from forest fires. An improvement of the 

ability to track aerosol clouds can lead to an improvement of our knowledge of the aerosol 

effects on climate. Given an aerosol cloud, from the measurement of its optical thickness and 

knowledge of the wind field it is possible to  calculate the rate of mass transport. Infact the 

aerosol optical depth T can be expressed as:17 

r = a B  

Where cx (m2 g-') is the mass scattering coefficient of the aerosol and B (g m-2) is the 

aerosol burden. If for example we assume that we have only sulfate aerosol in the plume, 

the mass scattering coefficient can be assumed to be equal to 5.0 m2 g-1.18i19 Assuming an 

optical thickness of 0.5 and that the plume extends in the vertical plane for about 100 km2 

the volume density of the aerosol is P = ~ O - ~  g m-3. If the wind velocity is 10 m s-' the total 

mass transported per unit second will be then FM=100 kg s-'. If the aerosol optical depth 

is measured with the Raman lidar technique and if we use CT, to represent the uncertainty 

in the aerosol optical depth then the uncertainty CJFM on the flux of mass will be given by: 

Then it is clear that an increase of the uncertainty in the extinction of a factor of 4, which 

reflects on an equal increase in the uncertainty in the optical depth, would lead to an increase 

of a factor of four in the uncertainty in the mass .flux. 
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6. Summary and Conclusions 

An improved algorithm to calculate the aerosol extinction coefficient from a Raman lidar ni- 

trogen signal has been validated. This algorithm uses the chi-squared test to choose the most 

probable least-square-fit model as opposed to choosing one a priori ,  which is the standard 

method of evaluating aerosol extinction from Raman lidar data. In order to correctly apply 

the chi-squared test the data need to follow a Gaussian distribution. To guarantee this, the 

traditional equation of the aerosol extinction must be reformulated. 

The chi-squared test increases the confidence primarily on the accuracy of the aerosol 

extinction uncertainty. It was shown in a simulated set of measurements that in general the 

linear model is the least likely to fit the data. Consequently, based on the results of numerical 

simulations, the extinction uncertainty calculated with the chi-squared method was found to 

be on average a factor of 4 smaller than the uncertainty obtained with the linear model, while 

differences in the estimate of the extinction were smaller than 2.5%. All the data possessed 

a spatial resolution of 75m and were analyzed using a sliding window of five points for the 

regressions. 

Additional simulations not presented in this paper indicated that the most probable model 

and its corresponding cumulative probability in general depend on the resolution of the data. 

The use of the chi-square test to distinguish among linear, quadratic and cubic models, as 

done here, is consistent with regression of 5 points. If more points need to be considered in 

the regression to improve the uncertainty in the retrievals, our tests indicate that, in general, 

re-binning the data so that approximately 5 points are used in the regression produces the 

cumulative probability closest to 0.5 for the least-squares fit when using the set of three 

models used here - linear, quadratic and cubic. 

The ability of the chi-squared test to reveal the underlying functional behavior of the data, 

and therefore for this technique on average to  yield smaller uncertainties than choosing a 

model a priori ,  depends on the uncertainty in the data (figure 3). In particular, based on 

the simulations shown here, for signal uncertainties smaller than 0.2% and aerosol extinction 

up to 0.4 km-' the chi square test was generally able to determine the functional behavior 
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in a useful manner, whereas for signal uncertainties larger than 0.4% and aerosol extinction 

smaller than 0.2 km-l the functional behavior was not clearly determined. In the experi- 

mental data shown here a Raman lidar signal uncertainty of 0.2% is achieved at a range of 

around 4 krn for aerosol extinction values smaller than 0.1 km-I using an averaging time 

of 300 seconds. Since many Raman lidar systems are capable of such measurements, the 

chi-squared technique can be generally useful for a more accurate estimate of tropospheric 

aerosol extinction and its uncertainty. 

The chi-squared technique was applied to experimental data from two field campaigns 

indicating that the linear model was the least chosen by the chi-squared test and the cu- 

bic model was the most frequently chosen (70%). These results agree with the simulations 

and indicate further that the a priori selection of the linear model to  calculate the aerosol 

extinction may be leading to inaccurate assessments of extinction uncertainty. 

Finally, the extinction uncertainty resulting from the chi-squared technique has been shown 

in 2-D diagrams as a function of the aerosol extinction and the uncertainty in the Raman 

lidar nitrogen signal. For extinction values ranging from 0 to 0.26 km-' and signal uncer- 

tainty ranging from 0 to 1.45% the extinction uncertainty is on average smaller than 30%. 

These diagrams can be considered preliminary "look-up tables" for estimating the aerosol 

extinction uncertainty given the value of aerosol extinction, which is accurately determined 

using an a priori selection of a linear model to regress the data, and Raman lidar measure- 

ment uncertainty. An example referring to the aerosol background averaged over the United 

States calculated during the monitoring program IMPROVEI3 of -0.05 km-' was presented. 

If such an extinction is to be measured with an uncertainty less than 10% using Raman lidar, 

it is required that the uncertainties on the signal be smaller than 0.3%. On the other hand if 

the extinction uncertainty required is less than 20%, the uncertainty in the lidar signal can 

be as large as 1.1%. The conclusion is that the background aerosol loading in the continental 

US can be accurately measured at night with a 5 minutes average using Raman lidar systems 

with the characteristics of the SRL. 

A reduction in the extinction uncertainty influences the uncertainty of quantities used to 

evaluate and study the effects of aerosols on the climate. The influence of errors in aerosol 
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extinction measurement has been studied based on the work presented h&e and assuming 

that a Raman lidar would provide the aerosol extinction data. A reduction of the extinction 

uncertainty by a factor of 4, like the magnitude of the difference between the linear model 

fit uncertainty and the chi-square technique results, causes a reduction by a factor of 4 

in the aerosol radiative forcing uncertainty, a factor of 4 in the IE (a coefficient used to 

parametrize the aerosol Indirect Effect) uncertainty, a factor of 3 in the uncertainty in the 

CCN concentration retrieval and a factor of four in the uncertainty in mass flux estimate. 

The results presented here are based on simulated retrievals of two extinction profiles and 

on nighttime Raman lidar measurements during the fall season at the same geographic loca- 

tion. Therefore they do not constitute a comprehensive database of either real or simulated 

Raman lidar aerosol extinction measurements under the full range of possible conditions. 

However, they nonetheless point strongly toward the conclusions 1) that the equation for 

aerosol extinction should be re-formulated prior to calculating extinction using any kind of 

regression technique due to the non-Gaussian statistics pertaining to the original form, and 

2) that a model to fit the data should not be chosen a piori but rather determined based 

on the results of the chi-square test since the work done here indicated large increases in 

uncertainty estimates were generally obtained using a linear model but that the linear model 

was very unlikely to properly represent the data. 
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Table 1. Configuration Of SRL during the campaigns VWIOP, WVIOP2 and 
VWIOP3. 

Laser Wavelength 351.1 nm 
Raman wavelength 382.4 nm 
Energy P e r  Pulse 40 mJ 
Primary Telescope 0.76 m 
Secondary Telescope 0.13 m 
Telescope f number 5 
FOV 0.002 rad 
Bin t i m e  0.5 ps 
Laser Rep Rate 400 
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List of Figure Captions 

Fig.1. Simulated extinction profiles that were used to simulate nitrogen signals. The 

one labeled Extl  represents a typical aerosol content decreasing with altitude in the 

boundary layer. The profile labeled Ext2 represents a lifted aerosol cloud with a raising 

portion between 0 and 1.5 km that could simulate for example aerosol hygroscopic growth. 

Fig.2. Panels showing the frequencies with which each model is chosen through- 

out the 200 profiles ensemble. Panels (a) and (e) show the simulated extinc- 

tion profiles corresponding to the results that are shown respectively in pan- 

els (b)-(d) and in panels (f)-(h) for averaging times 60s, 600s and 6000s. 

Fig.3. Diagrams showing for both simulated extinction profiles Extl (a) and 

Ext2 (b) showing the ranges of extinction and signal uncertainty for which 

the difference in frequencies between linear and cubic model are larger than 

30% (white pixels). The black pixels indicate that there are no data available. 

Fig.4. Panels showing the average uncertainties on the extinction calculated with 

the linear model, quadratic model and cubic model only together with the model 

chosen by the chi-square test (chosen) for 600s averaging times for both the simu- 

lated extinction profiles. Panels (a) and (d) show the extinction uncertainty profiles 

averaged over the 200 points, panels (b) and (e) show the standard deviations of 

each average profile and (c) and (f)  show the corresponding simulated extinction. 

Fig.5. Panels showing the six points selected for illustrative purposes 

(a,b). The plot (c) shows that in general more than 80% of the times 

the linear model results in extinction larger than the chi-square technique. 

Fig.6. Diagrams showing the results of the experimental dataset. Diagram (a) shows the 
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most frequently chosen model as a function of extinction and signal uncertainty, while dia- 

gram (b) shows in a similar diagram the average extinction uncertainty. 
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Fig. 1. Simulated extinction profiles that were used to simulate nitrogen signals. 
The one labeled Extl represents a typical aerosol content decreasing with altitude 
in the boundary layer. The profile labeled Ext2 Tepresents a lifted aerosol cloud 
with a raising portion between 0 and 1.5 km that could simulate for example aerosol 
hygroscopic growth. 
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Fig. 2. Panels showing the frequencies with which each model is chosen throughout 
the 200 profiles ensemble. Panels (a) and (e) show the simulated extinction profiles 
corresponding to the results that are shown respectively in panels (b)-(d) and in 
panels (f)-(h) for averaging times 60s, 600s and 6000s. 
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Fig. 3. Diagrams showing for both simulated extinction profiles Extl (a) and Ext2 
(b) showing the ranges of extinction and signal uncertainty for which the difference 
in frequencies between linear and cubic model are larger than 30% (white pixels). 
The black pixels indicate that there are no data available. 
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Fig. 4. Panels showing the average uncertainties on the extinction calculated with 
the linear model, quadratic model and cubic model only together with the model 
chosen by the chi-square test (chosen) for 600s averaging times for both the simu- 
lated extinction profiles. Panels (a) and (d) show the extinction uncertainty profiles 
averaged over the 200 points, panels (b) and (e) show the standard deviations of 
each average profile and (c) and (f) show the corresponding simulated extinction. 
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Fig. 5. Panels showing the six points selected for illustrative purposes (a,b). The 
plot (c) shows that in general more than 80% of the times the linear model results 
in extinction larger than the chi-square technique. 
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Fig. 6. Diagrams showing the results of the experimental dataset. Diagram (a) shows 
the most frequently chosen model as a function of extinction and signal uncertainty, 
while diagram (b) shows in a similar map the average extinction uncertainty. 
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